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Some features of the high Tt superconductors are analysed on the basis of the bisoliton
theory. They are the dependence of the transition temperature 7. on the number of
layers N and the anomalous current—voltage characteristics SIN contacts. By means of
the exciton theory a few normal optical properties of the high T. materials are used as
well. This is a small part of the many interesting properties of high T, superconductors.

1. Introduction

It is a fundamental problem in the field of high T, cuprates to understand the under-
lying physics to these compound systems.! Briefly, I shall discuss some properties
of copper oxide superconductors.

All new high temperature superconductors (HTSC) are characterized by a highly
anisotropic behavior along the ¢ axis and by multidimensional structures. Cuprate
superconductors are of extreme type II (A\/€ > 1, X is the coherence length, &
is the magnetic penetration depth). They have an anomalously high T, (critical
temperature). They are antiferromagnetic (AFM) insulators before doping.

One of the fundamental problems is still the mechanism of high tempera-
ture superconductivity. We have in the present time many mechanisms under
consideration.! The nature of the mechanism of high temperature superconduc-
tivity continues to be a mystery. Progress towards understanding these materials
is tied to the quality of the experimental data.? In this paper we discuss some fea-
tures of the layered high T. superconductors on the basis of the conception of the
bisoliton theory.® This theory as well as the BCS theory considers the properties of
HTSC below T.. The bisoliton theory does not contradict the problem of AFM in-
sulators before doping. This review deals with some properties of optical reflection
and absorption under normal temperature using the exciton theory.

*The author delivered the contents of this paper in a lecture at the Superconductivity Research
Center, Hitachi Ltd., and the Research Institute of Electrical Communication, Tohoki University,
Japan.
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2. Bisoliton Theory of High T, Superconductivity

According to a bisoliton model high T, superconductivity® in lanthanium and yt-
trium superconductors, containing in their unit cells a single CuQs layer situated
parallel to the a, b planes of the crystal, is stipulated by quasi-one-dimensional con-
densate bisolitons.? The bisolitons are distributed periodically in the layers along
the axis a or b. One bisoliton contained in each period aL is formed by two quasi-
particles (usually holes). Quasiparticles are connected in singlet spin state by a
local deformation field.

In a condensate moving with the velocity V' = hk/m, much smaller than that
of longitudinal sound, V4, two quasiparticles with effective masses m and wave
numbers k; = 2k + kp and k; = —kg participate in the formation of bisoliton.

In the frame & = (z—V't)/a moving with velocity V, in each period aL containing
one bisoliton symmetric wave, the function of the condensate bisolitons has the form

V(&1 &, 1) = V2B(61)B(E2) coslke (1 — &)]eHEHen—Frt, (1)
The real periodic functions ®(£) = ®(£ + L) satisfy the normalization condition
L
| =1, ()
These are the solitons to a nonlinear Schrédinger equation
4 4902 = =FE 3
gE t 40P —<) Q) =0, e=Ey/J, ®

determining the motion of quasiparticles in the field of deformation

U(€) = ~492*(¢) . (4)

Here E, is the energy of the quasiparticle, ¢ = 02/2«xJ is a nondimensional pa-
rameter of the interaction between a quasiparticle and the field of deformation, o
is the electron—phonon interaction and k is the coefficient of elasticity at a chain.
J = K?/2ma? is the energy of the exchange interaction at neighboring unit cells, m
is the effective mass of a quasiparticle appearing when doping the crystal and a is
a lattice constant.

In the general case the periodic solution Eq. (3) is expressed by means of the
elliptic Jacobi functions. Provided that the inequality gL > 1 is fulfilled, these
functions are reduced to the hyperbolic functions

B(¢) = /g/2sech(g). (5)

In this case the energy of both quasiparticles in the field of deformation (4), counted
from the Fermi energy Er, has the value

E, =—¢J. (6)
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Fig. 1. The structures of the unit cells of the family of thallium oxides T13Ba2Cay -1 Cu ~Oan43
at values of N =1, 2, 3, 4, and 5.

3. Interlayer Effects in the Newest High 7, Superconductors

New bismuth and thallium high 7T, superconductors'®!® contain several
N(=1,2,3...) of quadratic CuO; planes forming sheaves between individual layers
of thallium oxides. Neighboring CuO; layers in the sheaves are separated by Ca(Sr)
ions (Fig. 1).

The first theoretical investigation of the dependence of T, on the number of
CuO; layers within a sheaf was carried out by Anderson et al.!* Birman and Lu'®
applied the Ginzburg-Landau approximation to new high T, superconductors. They
determined the upper limit of T, equal to 140 K for monolayer and bilayer thallium
families. In several works, the dependence on the number of CuQO; layers in a unit
cell was calculated by using the microscopic formulation of generalized BCS theory.

Eab and Tang!®!7 derived expressions for the critical temperature T of super-
conductors with N layers on the basis of the Ginzburg-Landau phenomenological
model by using energy minimization. Using the experimental values of T, for the
first members of a series, the value of T.-for other members can be determined. The
theory of layered crystals with any number of interacting layers within a unit cell
was developed by Jha (Ref. 18, see also Ref. 19).

In all works, it was shown that the value of T, increases monotonically with the
number of layers in sheaves and attains a constant value for N > 10. However,
experiments carried out in 1989 by Kikuchi et al.?! revealed that it is not true. The
authors of Ref. 21 synthesized the superconductor TlyBa;CaCu40O;5 and observed
a decrease in the value of 7. upon a transition from three or four layers. They also
synthesized a series of superconductors T1;BasCay_1CunyO2n43, with the number
N varying from two to five, and proved that the value of T, increases with N to
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N = 4 and then decreases for N = 5. It was noted in Ref. 22 that such a decrease
is also observed for N = 6.

The T.(K) and the intraplanar lattice constant a(A) dependences on the number
of layers in the unit cell are given in Tables 1, 2, and 3. The highest 7. value was
obtained for N = 4 which has four CuO; layers in a unit cell.?!

In both single and double Tl-layered systems, the systems with the highest T,
(N = 4 for the former and N = 3 for the latter) have the shortest intraplanar
lattice constant a(A). In this case too the system with the highest 7.(N = 3) has
the shortest a(A).

Table 1. Single Tl-layered system Tl;Ba2CanOan+3-

N 1 2 3 4 5 6
a(A) - 3.8500  3.8493  3.8153 3.8469 -
T(K) 13-15 78-91  116-120 122 106 102

Table 2. Double Tl-layered system Tl;Ba;Cany—_1CunOan+4.

N 1 2 3 4
a(A)  3.8587  3.857  3.822 -
T(K)  20-80 110 125  108-112

Table 3. Double Bi-layered system Bi(Ca, Cr)n4+1CunOgn +4-

N 1 2 3 4
a(A) 3.796  3.823 3.818 -
T(K) 12-22 85-90 110-120 90

I shall explain the experimentally observed decrease in T, for large values of N
by the following.

3.1. Role of interplane interaction in high temperature
superconductivity

The bisoliton condensate of thallium and bismuth high T, superconductors is usually
investigated theoretically under the assumption that the value of T, is determined
only by CuO, planes.

Let us suppose that a unit cell contains N quadratic CuO2 planes. The energy
of quasiparticle pairs forming the bisoliton condensate as a result of the interac-
tion of quasiparticles with longitudinal (8., (along the layers) and transverse £n.
displacements of the sites, ana, in a crystal is characterized by the Hamiltonian®®

H= Z Qomx(_J(Wn-Q-l,a + ‘Pn—l,a) +{W,+ W" + 26}] (iBn+1,a = Bra)Pna
a

- L[‘Pn,a+1 + ¥n,a-1+ 204 (gna - fn,a+1)(Pn,a+1 + ({na - 5n,a—1)¢n,a—1]}()7')
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The index & = 1, 2, ... labels the layers in a unit cell. The index n varies from 1
to L. L is the interaction coefficient between layers. The energy of a longitudinal
deformation is determined by the formulae

Wy = 551 3 (Ba+1,a — Bua)? (ongitudinal) (8)
W, = % K1Y (€na — En,a—1)*(transverse) (9)

no

The functions ¢, satisfy the periodic conditions
Pna = Pn+l,a (10)
and the boundary conditions
®no = @n,N+1 =0. (11)

The normalization condition LN
IPI (12)
n=1a=1

indicates that each sheaf of N layers contains a bisoliton.
We shall seek the wave function of a sheaf containing N planes in the form

N

B(€) = CaPalf), (13)

a=1

with the coefficients C,, satisfying the conditions
N
Co=Cnt1=0, Y CI=1. (15)
a=1

The energy Eyps(N) of a sheaf containing N layers is defined by the system of
equations obtained in Ref. 4:

X(N)Co = ¥(Cot1 + Ca-1) = 9(Cit; + C4_{)Ca =0, (16)

where
X(N) = Eps(N) — EJ,, (17)

EP. being the energy of a layer, y = L/J, and 20 = §2/kJ.

The second term in Eq. (16) accounts for the interaction between two adjacent
CuO; planes separated by Ca(Sr) ions. The third term takes into account the role
of variation of interplane distances.

If a unit cell contains only one CuQO; layer, we must put v = ¢ = 0 into Eq. (16).
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3.2. Energy of sheaves of CuO; planes for a fized separation between
the planes
If we disregard the variation of the separation between the planes in sheaves, we
must put ¢ = 0. In this case, Eq. (16) is reduced to
X(N)Cq =~ ¥(Cat1 — Ca-1) =0 (18)

under the additional conditions (15). Then the energy level EL, of a plane splits into
N sublevels due to the interaction between the layers. The roots of the equation
have the following values:

x(N)= —2vcos[sJ/(N+1)], J=1,N. (19)
The energy is given by
ED = B, — 2ycos[nJ/(N + 1], (20)

where E{_ is the energy of a layer. The superconducting state is determined by the
minimum value, i.e. for J. Consequently, the critical temperature 7. of a layered
superconductor is defined as

m
N+1’

T.(N) —T.(1) = 2vAcos (21)

where T, (1) is the critical temperature of a superconductor with a single plane.
The coefficient A can be determined from experimental values for the first members
of the series.

3.3. Energy of sheaves of CuO; planes with a varying separation
between the planes

In order to calculate the energy of a sheaf of CuO; planes taking into account the
variation of the separation between the planes, we shall, in the first approximation,
make the following substitution into Eq. (16):

CZ,+C:_, — D(N). (22)
In this case, the system of equations (16) is transformed to
[X(N) = e D(N)]Ca = ¥(Cat1 = Ca—1) = 0. (23)

For a further simplification of our analysis, we shall estimate the functions D(NN)
by using the values of C obtained in Sec. 3.1. The critical temperature of a super-
conductor containing N layers is defined as*

TN -T) _,

HN) VA S
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The dependences of the functions 2 cos[r/(N + 1)] and D(N) on N are shown in
Table 4.

Table 4. Dependence of the functions 2 cos[r /(N + 1)] and D(N) on N.

N 2 3 4 5 6 7 10 12 15
2 cos[m /(N + 1)] 1.0 1.41 1.62 1.73 1.80 1.85 1.90 1.94 1.96
D(N) 1.0 0.66 0.55 0.30 0.17 0.10 0.08 0.02 0.01

Table 5. Dependence of ¢(N) on the number N of sublevel in the sandwich.

o/y N

2 3 4 5 6 7
0.6 1.60 1.80 1.95 1.91 1.90 1.91
0.8 1.80 2.15 1.06 1.97 1.93 1.93

The functions D(N) is described by the average distribution of the probability
of the presence of one bisoliton on a single layer sandwich. Naturally the value
D(N) is diminished when the number N of sublevels in the sandwich is increased.

Using the values of Table 4 we obtain the function ¢(N) which is proportional
to T.. The values of t(N) for two values of o/v, 0.6 and 0.8, are shown in Table 5
as a function of the number of layers (V).

According to Eq. (24) the maximal value ¢(N) corresponds to the maximal
critical temperature and minimal average value of the intraplanar lattice constant
a(A). These theoretical results correspond to the experimental data shown in
Tables 1, 2, and 3.

In Fig. 2 the dependence of t(N) on N is shown for the values of o/~ equal to 0,
0.6, and 0.8. The presence of the maximum value on the curve of ¢{IV) is an obvious
consequence of taking into account the displacement of the intraplanar distance in
the sandwich.

Using the experimental values of T.(N) for the family of superconductors
Tl BasCan_1CunOqny3 one can obtain at o/y = 0.6 the theoretical dependence
of T, on the number of CuO; layers in the unit cell. This dependence is shown by
the curve in Fig. 3. The experimental values are indicated by circles.

We should note that the coefficients A and ~ will be different for various ma-
terials, so we define the distribution for each material. This dependence is phe-
nomenological because A and « are defined from experiment for the first two points
(Table 1). In Fig. 3 T.(N) agrees with the experimental data well but for N = 5
and 6 we have a deviation. This deviation may be explained by the fact that we
used the first approach. To obtain more exact dependence it is necessary to use the
next approaches. In Refs. 4 and 5 we have shown that the observed nonmonotonic
dependence with the maximum at some layers can be explained if one takes into
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Fig. 2. Dependence of the ratio t(N) = [Tc(N) — Tc(1)]/Av for the values of ¢/ = 0(1), 0.6(2),
and 0.8(3) on the number N of plane CuO2 layers in the unit cells of layered superconductors.

140

Tc (K) ——

Fig. 3. Theoretical dependence for o/v = 0.06 of the critical temperature T of a series of super-
conductors TljBasCan_1CunyOan 43 on the number N of plane layers in unit cells. Experimental
data are marked by circles.
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account the changing of intraplanar distances, arising with the generation of bisoli-
tons. Another explanation for nonmonotonic dependence T.(N) is given in Ref. 32
in the framework of the plasmon mechanism of superconductivity.

This paper obtains actual with the creation of the compound (Caj_5S2:)1—y
CuO; with an “infinite” number of CuQ, layers.2?

4. Anomalous Current—Voltage Characteristics SIN Contacts

This section deals with the following peculiarities of SIN contacts of IVC and ex-
plains them in terms of a bisoliton HTSC theory:

(i) A direct result of such states of the superconductor is the asymmetry of the
current—-voltage dependences in tunneling systems with respect to the sign of
the applied field (the dependence of the superconducting transition dielectric
gap on the direction of current in the tunneling metal-insulator-superconductor
systems.2425

(ii) Substructures of current-voltage dependences.?42

4.1. Superconducting gaps

In Ref. 6 superconducting gaps were calculated:
A= i‘? sinh™}(1/)), A= N(EF)G, (25)

where G = 0%/k is the parameter characterizing the electron—phonon interaction.
In soliton theory G determines the nonlinearity of the system, v is the number
that determines the relative part of carriers participating in the creation of the
superconductivity condensate, v = 1, 2, 3 ... and satisfies equation kpL = 27v,
where L is the period bisoliton condensate.

The energy spectrum of particles is divided into two bands (Fig. 4):

E o) = ) = ek = 2ke) — 28y i\/(e(k)+s(k—2kF))2+A2‘ 20

2 2

The upper band is empty and the lower one is occupied by electrons. As shown
in (6) in a quasi-one-dimensional system, A is a function of the wave factor kp =
mG/8wh?, or A =0, 5 (Fig. 5).

4.2. Superconducting current

In a superconductor with a current (@ # 0), the energy spectrum is deformed,
and the symmetry relative to the sign inversion of the momentum is violated (see
Fig. 2). Such an asymmetric electron distribution is responsible for the emergence
of a nonattenuation superconducting current I given by

L=% 2 (w Gk -n 5. (27)

k 2msi oz
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Fig. 4. Energy structure of one-particle spectrum in the superconducting state; the dot-dashed
line corresponds to the normal state. 4 = 10, A = 2 in relative units.
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Fig. 5. Dielectric gap A as a function of the wave number wkg/g.

where the wave function 14 (z) is defined in Ref. 7. This current oscillates with time
at a frequency w = hkrp@Q/m. According to Ref. 7, its mean value is
T/2 eVkp

I;) = lim I(t)dt =
()= fim [ ==

(1 - A/Eg). (28)

As the superconducting current increases in proportion to the velocity of bisolitons,
the top of the lower band (filled with electrons) is raised and the bottom of the upper
(empty) band is lowered. When they reach the same level, a fraction of electrons
go over to the unfilled band, and the system acquires a resistance. Consequently,
such a system offers no resistance to the current only when

Aut = Euplk = ~ke| + Q/2) — E(k = [ke| + Q/2) > 0. (29)
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Fig. 6. The energy structure of the one-particle spectrum of a bisoliton in the superconducting
state with a current (Q # 0).

Following Ref. 7 we obtain
Aeg = A — 2hkgV >0 (30)

(A characterizes the effective dielectric gap width in a superconductor with a
current). Thus, we can derive the following expressions for the critical velocity Ve,
and the critical current (I, ):

A
2hkr

() < () = oo (1 _ EA;) |

In a system with a current I < I in the superconducting state, there is no
scattering of charge carriers which would not violate the asymmetry of energy bands.
The same situation holds at finite temperature below the critical value. In this case,
the charge carriers generated by thermal excitations are in equilibrium and do not
participate in the transport of current. Thus, we arrive at the two-component Fermi
gas, one component of which is superconducting and the other is normal. A drift of
the normal component is accompanied by energy dissipation and liberation of Joule
heat.

The superconducting gaps expression is

ZA_V(l—Q2/4k%) sinh ( P ) . (32)

V<Ve=
(31)

Let us give the comparison with experiment. If Q = 0, the current is absent,
and the formula describes the dependence of kg (see Fig. 5) which agrees with the
experimentally observed dependence of the gap on the doping concentration.3
The dependence on v is well described by the simplified formula (multigap
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superconductivity®®) A = (Ag/v)(v = 1,2,3...). Two energy gaps with the
values La; gSrg.oCuQy4, observed simultaneously in Ref. 30 during point contact
spectroscopy of 2A; = 13.3 MeV and 2A; = 26 MeV, correspond to the values
v=1, v=2,and Ay/A; = 2 in the above model of superconductivity. According
to the tunnel measurement3! a multigap pattern is also observed in superconducting
LaSrCuO film with gap width equal to 20, 30, and 60, respectively. This relation
between the gaps can be compared with the values v = 3, 2, and 1. We can observe
the dependence on @ by the displacement o which characterizes the asymmetric
JVC included in the next section.

4.3. Current—voltage characteristics

The deformation of the energy spectrum by a superconducting current leads to pe-
culiarities in the current-voltage characteristics of metal-insulator—superconductor
systems, which can be observed experimentally. The current through a metal-
insulator-superconductor junction is determined with the help of the barrier trans-
mission coefficient which has a constant value”:

e

I= 5520 [ PUA(E) - fa(B)lde + (1 ()

(p is the density of electrons incident on barriers in the metal and f; 2(E) are the
Fermi distribution functions for electrons in the metal and superconductor, respec-
tively). The component (I) in formula (33) is due to the possibility of tunneling
through a barrier directly from the lower band of the superconductor to a state
in the metal below the Fermi level (and in the opposite direction for the reverse
current) in the bisoliton theory of superconductivity (in view of the violation of
symmetry in the electronic distribution). Such a tunneling resembles the Josephson
current in a superconductor—insulator-superconductor system. The current in the
outer layer of the metal is normal.

In Ref. 7 we calculated the current-voltage characteristics. Figure 7 shows the
current [ (curve 1) and conductivity dI/dy (curve 2) as functions of the applied
voltage ¢ at temperature kg7 /A = 0.1. In the temperature region near T = 0, we
obtain the following expression for Ay at ¢ = 0:

Ay =A—JkpQa?, A_ = A+ JkrQd?,

(34)
6=A, —A_ =2JkpQa’® = 2aA.

4.4. Substructures of current—voltage dependences

The superconducting band substructure revealed in a good deal of experiments in
HTSC has not yet been explained unambiguously. It is apparent that the compre-
hension of the reasons inducing the substructure is associated with the peculiarities
of the superconductivity mechanism. As was noted in Refs. 23 and 24, the multi-
band structure may arise in the bisoliton theory, and this is caused by the existence
of a periodic structure of the bisoliton.
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Fig. 7. Characteristic (curve I) and dependence of conductivity dI/dy on voltage ¢ (curve II) for
superconducting current.

Fig. 8. The metal-dielectric—superconductor structure.

We consider the system composed of the metal in the normal state, the dielectric
barrier, and superconductor (Fig. 8). When the contact is formed between the metal
needle and the superconductor surface the latter in the near surface region can be
characterized by the different concentration values of carriers and the parameter
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Fig. 9. The conductivity dependence on the external potential for the inhomogeneous supercon-
ductor with Az /A3 = 3/2.

Ayyp 2 ®=V/a

v in each of the regions S;. As the concentration changes the gap value changes
continuously, the v variation leads, according to Ref. 6, to the jumplike change of
the gap.

As is suggested in Ref. 7 the total current in such a system can be represented as
a sum of tunneling currents from each superconductor region to the metal contact.
Thus, the total current that runs through a system is determined by

I=ZI¢, (35)

where I; is determined by (I).

The dependence of the conductivity o = dI/dV on the magnitude of the applied
voltage for the case of homogeneous superconductors composed of two regions with
Ay /A3 =3/2at kgT /A = 0.11y3/Ip3 = 0.75 is shown in Fig. 9. The current—voltage
dependences of this type are observed for many HTSC.?4:26 It should be noted that
the values of A obtained experimentally are well described by the empirical function
A, =Ao/n,n=1,23, ...

5. Interlayer Interaction in the Reflection Spectra of Bismuth
HTSC Crystals

In this section we consider normal properties of HTSC. We explain interesting
experiments of the reflection spectra?” of bismuth crystals. We follow Refs. 9-
11. Considerable efforts are focused on studying the optical properties of
BiySroCay,—1Cu,O2pyq compounds. In particular, there is a great interest on how
the Bi; O, layers affect essentially the physical properties, optical ones induced, of
these crystals. The fact that peculiarity of E ~ 4 eV in BipSryCaCuzOgy, and
BiySroCuQg crystals consists of several peaks and forms relatively intensive and
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Fig. 10. Experimental reflection spectra R(c) for the crystals: (a) BizSroCaCuz20g and
BiySraCuOg, (b) (Ca,Sr)CuOs.

wider reflection band than in (Ca,Sr)CuO, (Figs. 10(a) and (b)) implies that exci-
tations in CuQOs layer, as in Bi;O2/SrO layers, give probably the total contribution
to this wide reflection peak. Generally speaking, the Bi;O,/SrO layers can also be
isolating and have no direct relation to superconductivity.

5.1. Model of crystal

According to experimental data we shall assume the conducting planes and noncon-
duction Bi,O2 /SrO layers to be isolated and the excitations, effected in them, to be
preserved well enough in zero approximation. Thus, such a crystal can be regarded
as a unidimensional molecular crystal where the above planes interacting between
themselves play the role of molecules. One can use here the approach well known
in the theory of molecular crystals,?® having noted one important point: not all
layers involved in the unit cell are identical. Frequencies of the transitions in them
are specified somewhat different so that this situation is more close to the case of
combined Fermi-Davydov resonance®® where the frequencies in a single molecule
can be different.
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Let the number of frequencies in the unit cell of crystal be o, then the wave
functions of the ground % and excited 1 states, and also the Hamiltonian operator
of such layered crystal, can be written as

oV

0 =[] ha, (36)
n=1

Y= Z CratPfn (37)
oN 1

H:ZHna+§ Z Vna,mﬁ)
n=1 na#mpg

H‘na = na‘pna, Hna‘Pga = Ega(pg,(x N (38)

Here N enumerates the number of unit “layered” cells in the main region of the
crystal cycle, 9% and ¢, are the wave functions of an isolated layer in the ground
and excited states, respectively, H,, is the Hamiltonian of an isolated layer, Vo, mg
is the interaction operator of na and mg layers, and a,, are the probability ampli-
tudes because of the fact that the excitation obeying the normalization condition
arises in the layer. The excitation energy of the crystal, containing o molecules
in the unit cell, is determined by the standard expression which after the Fourier
transformation takes the form

AH =) alatea(Aca + Do) + Y aratngMap(K), (39)
Ko raf

A¢na = Ata,  Dna=Day,  Map(k) = Hpampe™ ™™™ . (40)

Here « is one-dimensional wave vector directed perpendicularly to the layers, i.e.
along the crystal axis.

5.3. Dielectric function of crystal

To study the spectral distribution within the transitions it is convenient to go over
the second quantization representation. According to the known procedure (see,
e.g. Ref. 28) the excitation energy operator of the crystals conserves, in Heitler—
London approximation, the previous form,?® where the values a}t, and a«, can now
be regarded as the Bose operators.

The dielectric function is expressed through the dipole moment operators:®

A7
531(’“‘)) = E0zz — 7 Zdadﬂa«(ana + a‘ta)‘r’ (a‘—-xﬂ + a:ﬂ)»w . (41)
ofy

Here v = ls is the unit cell volume, ! is the dimension along the axis, and s is the
layer area. In the layer axis |z, y| the crystal lattice is square, thus o, => o, and
d, is dipole moment of layer . Green’s function was calculated in Refs. 9 and 10.
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Fig. 11. The spectral dependence of the reflection coefficient R(w) in the region of mixed
CuO2Bi302/SrO transition for the four-layered crystal under varying interaction parameter of
the layers of different origin (x’, x'" — real part and imaginary part of the dielectric function).

5.4. Reflection coefficient

The reflection coefficient is determined by the following equation:®
n(w) =1 (n—1)% +&?
nw)+1|  (n+1)2+x2’

where the complex refraction index n(w) = n + ix is connected with the dielectric
permeability function

(42)

R(w) =

e(w) =€ +ie” =n*(w) = (n +ik)?. (43)
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Fig. 12. Change in the reflection spectrum R(w) for the three-layered crystal under varying
parameter a: (a) a =0, (b) a = 0.05, (c) ¢ = 0.15.

As is shown in Fig. 11, the calculations based on this model give good results and
represent the experimental data quite well. It can also be seen in Fig. 12 that the
parameter a which defines the matrix element of interaction of Cu plane with Bi
plane plays a very important role. The approach based on the molecular crystals
correlates with the Freeman conclusions®® about the possible important role of
excitons arising in the layers separating the CuO; layers for HTSC crystals.
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